

Facoltà di Ingegneria e Architettura Anno Accademico 2021/2022 Corso di studi in Ingegneria Aerospaziale, classe di laurea L09

Insegnamento	Principi di Simulazione del Volo
CFU	6
Settore Scientifico Disciplinare	ING-IND/05
Nr. ore di aula	48
Nr. ore di studio autonomo	102
Nr. ore di laboratorio	0
Mutuazione	NO
Annualità	NO
Periodo di svolgimento	I semestre

Docente	E-mail	Ruoloi	SSD docente
Calogero Orlando	calogero.orlando@unikore.it	PA	ING-IND/05

Propedeuticità	Nessuna
Prerequisiti	Conoscenze derivanti dagli insegnamenti di Fondamenti di Aeronautica, Fondamenti di Informatica, Meccanica del Volo
	Fondamenti di Informatica, Meccanica dei Volo
Sede delle lezioni	Facoltà di Ingegneria e Architettura – Laboratorio M.A.R.T.A.

Moduli

N.	Nome del modulo	Docente	Durata in ore
	i	:	i

Orario delle lezioni

L'orario delle lezioni sarà pubblicato sulla pagina web del corso di laurea: https://gestioneaule.unikore.it/agendaweb_unikore/

Obiettivi formativi

Obiettivo del corso è fornire allo studente un quadro sufficientemente dettagliato del sistema simulatore di volo e dei sui principali impianti necessari per il funzionamento. Particolare attenzione è posta al datapackage, ovvero alla modellazione e simulazione del comportamento del velivolo. L'insegnamento si propone di portare gli allievi a sviluppare una capacità di analisi e di sintesi tale da consentire la definizione e la verifica di modelli semplificati, lineari e non, del sistema velivolo e dei suoi impianti. Vengono a tal scopo forniti fondamenti di modellazione e analisi numerica dei sistemi dinamici utili per la realizzazione di un simulatore semplificato del sistema velivolo. Il funzionamento dinamico di alcuni componenti studiati viene simulato al calcolatore.

Contenuti del Programma

- 1 2 h **Introduzione sui simulatori di volo.** Cenni Storici; Classificazione; Utilià dei simulatori; Alcuni esempi
- 2 6 h **Sistema Simulatore di Volo.** Architettura di un Simulatore; Visual System; Sound System; Motion System, Aspetti fisiologici; Control Loading System; Cockpit; Instructor Operating Station; Data Package
- 3 10 h **Fondamenti di Modellazione Applicata.** Meccanica Newtoniana ed Equazioni differenziali; schemi di Integrazione Numerica; Cenni di Sistemi Dinamici; Sistemi del

- primo e del secondo ordine; rappresentazione mediante diagrammi a blocchi; esempi di modellazione ed esercizi di implementazione.
- 4 20 h **Principi di modellazione del volo**. Modello di atmosfera; Equazioni del moto; Forze aerodinamiche; Propulsori; Equilibrio e stabilità; Modellazione ed implementazione di un simulatore di volo semplificato.
- 5 8 h **Simulazione dei Sistemi di Controllo e navigazione.** Sistemi di controllo PID; Sistemi di controllo di volo di aeromobili; Autopilota, sistemi di aumento della stabilità e del comando SAS e CAS. Simulazione dei sistemi di navigazione. Esempi di modellazione ed implementazione
- 6 2 h Gestione e manutenzione ordinaria di un simulatore.

Risultati di apprendimento (descrittori di Dublino)

I risultati di apprendimento attesi e definiti secondo i parametri europei descritti dai cinque descrittori di Dublino sono:

1. Conoscenza e capacità di comprensione:

Conoscenza delle funzionalità, dei principi di funzionamento, delle tipologie e delle caratteristiche dei simulatori di volo. Conoscenza dei metodi di modellazione e analisi utili per la simulazione del volo

2. Conoscenza e capacità di comprensione applicate:

Capacità di applicare metodi di modellazione e analisi numerica per la simulazione dei principali componenti di un simulatore di volo.

3. Autonomia di giudizio:

Essere in grado riconoscere le problematiche proprie dei sistemi di simulazione del volo e di individuarne le cause operando la scelta e l'applicazione degli approcci di analisi sistemica avanzata, determinando quindi i consequenti interventi di soluzione.

4. Abilità comunicative:

Capacità di comunicare, sia per mezzo di relazioni tecniche che oralmente, circa gli approcci di modellazione, analisi numerica e circa i risultati delle simulazioni della risposta di un simulatore. Avrà inoltre abilità comunicative sia a livello di interazione all'interno di un team sia a livello di interazione con tecnici specializzati.

5. Capacità di apprendere:

Lo studente apprenderà i principi di funzionamento del sistema simulatore di volo che gli consentiranno l'approfondimento degli argomenti a livello superiore attraverso la maturata capacità di comprensione di testi, pubblicazioni e documenti specialistici.

Testi per lo studio della disciplina

Testi principali:

Allerton, D. (2009). Principles of flight simulation. John Wiley & Sons;

Testi di approfondimento:

Pallett, E. H. J. (1993). Automatic flight control 4e. John Wiley & Sons. Rolfe, J. M., & Staples, K. J. (Eds.). (1988). Flight simulation. Cambridge University Press

Metodi e strumenti per la didattica

Lezioni Frontali; Esercitazioni, lavoro di gruppo per l'implementazione del modello di volo; Materiale didattico a disposizione degli studenti presente sulla piattaforma informatica di Ateneo (ad accesso riservato agli studenti)

Modalità di accertamento delle competenze

La verifica delle conoscenze tecniche apprese dagli allievi si svolgerà attraverso un colloquio orale la cui durata è indicativamente pari a 40 minuti. Le domande possono spaziare sugli argomenti indicati nel programma del corso. La conoscenza dell'architettura e dei principi di funzionamento dei sottosistemi di un simulatore del volo, la capacità di disegnare gli schemi funzionali, la capacità di definire un modello matematico, scrivere e risolvere le equazioni di governo del sistema simulato e di descriverne una possibile implementazione numerica così come la capacità di comunicare efficacemente usando i termini tecnici appropriati risultano fondamentali per il superamento dell'esame.

Date di esame

Le date di esame saranno pubblicate sulla pagina web del corso di laurea: https://gestioneaule.unikore.it/agendaweb_unikore/

Modalità e orario di ricevimento

Tutti i giorni, sia in modalità virtuale che in presenza, previo appuntamento via e-mail.

ⁱ PO (professore ordinario), PA (professore associato), RTD (ricercatore a tempo determinato), RU (Ricercatore a tempo indeterminato), DC (Docente a contratto).